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Abstract. We present the general solutions for the classical and quantum dynamics of the anharmonic
oscillator coupled to a purely diffusive environment. In both cases, these solutions are obtained by the
application of the Baker-Campbell-Hausdorff (BCH) formulas to expand the evolution operator in an
ordered product of exponentials. Moreover, we obtain an expression for the Wigner function in the quantum
version of the problem. We observe that the role played by diffusion is to reduce or to attenuate the the
characteristic quantum effects yielded by the nonlinearity, as the appearance of coherent superpositions of
quantum states (Schrödinger cat states) and revivals.

PACS. 03.65.Yz Decoherence; open systems; quantum statistical methods – 02.20.Sv Lie algebras of Lie
groups

QICS. 02.10.+t Quantum-Classical Transition – 02.40.+d Interaction with environment and decoherence
– 02.90.+f Fundational issues of quantum mechanics

1 Introduction

In the last decades, the investigation about the transition
from quantum to classical dynamics has progressed enor-
mously. This was induced in part by the development of
the experimental techniques, especially in quantum op-
tics [1], and in part by the possibility of appearance of
technology in quantum information processing [2,3]. Such
research aims to understand how the typically quantum
effects disappear in the dynamics of macroscopic systems.
According to a popular theoretical model, one believes
that the emergence of the classical world from quantum
mechanics is a consequence of the unavoidable coupling
between the macroscopic system and its environment. For
example, in accordance with this proposal [4], environ-
mental coupling is responsible by the rapid evolution of
coherent quantum superpositions of macroscopically dis-
tinguishable states (Schrödinger cat states) into statistical
mixtures, a phenomenon known as decoherence.

Despite these theoretical advances, some aspects of the
quantum to classical transition remain subtle and con-
troversial, especially in the case of classically nonlinear
or chaotic systems. For some authors, the departure of
the quantum mean values of observables from the cor-
responding classical ones (correspondence breakdown) in
chaotic systems occurs in a very small time scale (see,
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for example, [5]) and they sustain the idea that the cou-
pling with purely diffusive environment can reduce these
discrepancies and increase the break time by decoherence.
On the other hand, for other authors (see [6]) decoherence
is not necessary to explain the classical behavior of macro-
scopic systems (including the chaotic ones) since the ob-
served discrepancies between quantum and classical mean
values of observables are negligible for any current realistic
measurement.

In order to shed some light on this debate, we turn our
attention to the one-dimensional nonlinear or anharmonic
oscillator (AHO) coupled to a purely diffusive reservoir.
Three are the reasons for the choice of this model. Firstly,
in the limit of vanishing environmental coupling, its quan-
tum dynamical evolution exhibits several effects without
analogous in its classical counterpart, such as revivals and
appearance of coherent superpositions of states [7]. Sec-
ondly, by virtue of its relative simplicity, it is possible to
obtain the exact solutions of the equations of motion for
quantum [8–14] and classical versions of the model even
in the presence of the reservoir. Last, but not least, the
recent technical advances in trapping and controlling cold
atoms suggest the Bose-Einstein condensates (BEC) as
potential candidates to implement experimental tests of
this model. In fact, in the single-mode approximation, a
BEC trapped in a optical lattice is suitably described by
the quantum nonlinear oscillator [15]. Hence, dissipative
AHO became a largely studied model in the literature.
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In reference [10], Daniel and Milburn obtained the ex-
act evolution of the Q function associated to an initial
coherent state of an AHO subject to attenuation or am-
plification. The authors showed that the effects yielded
by nonlinearity, such as revivals and squeezing, gradually
vanish if a non-unitary mechanism is taken into account.
These results were extended by Peřinová and Lukš [11] to
an arbitrary initial state. In reference [13], Kheruntsyan
obtained the steady state of Wigner function of a sin-
gle driven damped cavity mode in the presence of a Kerr
medium. The author studied a model of reservoir that
included two-photon absorption, besides the usual one-
photon absorption. Closely related to the present con-
tribution, Chaturvedi and Srinivasan [12] found an ex-
act solution of a class of master equations governing the
dynamics of a chain of coupled dissipative AHO. The au-
thors used thermofield dynamics notation in order to map
a master equation into a Schrödinger equation with a non-
Hermitian Hamiltonian. The form of the general solution
of this equation was expressed as an ordered product of
exponentials of operators acting on an arbitrary initial
condition.

In this contribution, we obtain the exact time evolu-
tions of the density operator (Sect. 2) and of the classical
distribution function (Sect. 3) in the quantum and classi-
cal versions of the nonlinear oscillator coupled to a purely
diffusive environment. Both results are obtained by the
application of the Lie algebraic techniques, in particular,
the Baker-Campbell-Hausdorff (BCH) formulas used to
expand a Lie exponential in an ordered product of expo-
nentials [12,16–19]. In the quantum case, the result allows
us to find the corresponding Wigner function in terms
of an expansion in associated Laguerre polynomials. It is
important to mention that the Wigner function should
smoothly approach the corresponding classical distribu-
tion in the appropriate limit [5]. Thus, we take the clas-
sical limit of the partial differential equation (PDE) that
governs the time evolution of the Wigner function and we
obtain a classical Fokker-Planck (FP) equation. The al-
gebraic structure of the master equation in the quantum
case is preserved by the corresponding FP equation in the
classical case, so that we can extend the methods applied
to obtain the solution of the first in the finding of the
solution of the last.

In reference [20], Oliveira and co-workers investigated
the diffusive AHO and showed that the break times (i.e.,
the characteristic times of departure of the quantum and
classical dynamics) depend strongly on observable and
initial condition. A more “fair” comparison between the
two dynamics shall be given by the evaluation of the
distance between the corresponding distributions in the
phase space [21]. Hence, the exact solutions of the equa-
tions of motion for the Wigner function and classical dis-
tribution function will allow to define analytically the
break time for the diffusive AHO and its dependence in
terms of the nonlinearity strength and diffusion constant.

We conclude this work by comparing the quantum
and classical evolutions of the Wigner and the classical
distribution functions for an initial coherent state in the

AHO with and without diffusion (Sect. 4). The results
are preliminar and deserve a more careful analysis, but
they suggest that, as expected, in quantum case, inclu-
sion of diffusion reduces the phase space interferences and
therefore prevent the appearance of quantum coherent su-
perpositions. The area of the regions where the Wigner
function should be negative is reduced too. As time goes
by, the Wigner distribution gradually takes the form of an
annular volume around the origin of the phase space. For
later times, this volume becomes more “fat” and “flat”.
In the classical case, the fine-structured whorl yielded by
the distribution in the diffusionless regime is destroyed.
As it happens in the quantum case, diffusion turns the
classical distribution more “fat” and “flat” around the ori-
gin. These results suggest that the Wigner function of the
quantum diffusive AHO converges gradually to the distri-
bution function of the corresponding classical version of
the model in non-unitary evolution.

2 Quantum mechanical diffusive anharmonic
oscillator

Let us consider the AHO coupled to a thermal bath of os-
cillators in equilibrium at temperature T . Assuming that
the nonlinearity strength is small and the coupling to the
reservoir degrees of freedom is weak, we obtain the follow-
ing master equation in the interaction picture:

.

ρ̂ (t) = Lρ (t)

= −ig
[(

â†â
)2

, ρ̂ (t)
]

+ k (n̄ + 1)

× [
2âρ̂ (t) â† − â†âρ̂ (t) − ρ̂ (t) â†â

]

+ kn̄
[
2â†ρ̂ (t) â − ââ†ρ̂ (t) − ρ̂ (t) ââ†] , (1)

where k and g are the damping and nonlinearity constants,
respectively, and n̄ is the average number of thermal pho-
tons in the mode ω of reservoir (ω is the natural frequency
of the oscillator). The density operator ρ̂ (t) represents the
state of the system at time t; â and â† are the annihilation
and creation operators, respectively. We are interested in
the so called diffusive limit of the above equation. This
limit is obtained by taking the damping constant going to
zero, k → 0, and the number of thermal photons going to
infinite, n̄ → ∞, keeping the product κ = kn̄ finite. Thus,
the master equation (1) becomes

.

ρ̂ (t) = L∞ρ (t)

= −ig
[(

â†â
)2

, ρ̂ (t)
]

+ 2κ
[
âρ̂ (t) â†+â†ρ̂ (t) â−â†âρ̂ (t)−ρ̂ (t) â†â−ρ̂ (t)

]

= −ig
(M2−P2

)
ρ̂ (t)+2κ [J+R−(M+P+1)] ρ̂ (t) .

(2)
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Table 1. Commutation relations between the sup-op defined in equation (3). The i, j entry in the table is the result of the
commutation between the sup-op of the ith row and the sup-op of the jth column.

M−P 1
2

(M + P + 1) R J
M−P 0 0 0 0

1
2

(M + P + 1) 0 0 R −J
R 0 −R 0 − (M + P + 1)

J 0 J M + P + 1 0

Using the notation given in reference [22], the super-
operators (sup-op) that appear in the last line of above
equation are defined by

M ≡ (
â†â

)
l
= â†

l âl, (3a)

P ≡ (
â†â

)
r

= ârâ
†
r, (3b)

J ≡ âlâ
†
r = â†

râl, (3c)

R ≡ ârâ
†
l = â†

l âr. (3d)

Here, âl, â†
l , âr, â†

r represent the left and right actions
of the creation and annihilation operators on a generic
operator Ô:

âlÔ = âÔ, â†
l Ô = â†Ô, ârÔ = Ôâ, â†

rÔ = Ôâ†. (4)

At this point, it is convenient to introduce the following
nomenclature. We call B (H) the set of operators that act
on the oscillator space state H. The elements of B (H) can
be assigned to vectors of an extended Hilbert space con-
structed by direct product between the original space state
and its dual H∗, viz. H⊗H∗. This extended Hilbert space
is frequently called Hilbert-Schmidt space or Liouville
space [23].

The formal solution of equation (2) is given by

ρ̂ (t) = eL∞tρ (0) , (5)

where ρ̂ (0) represents the initial state of the AHO. The
evolution of a generic initial state

ρ̂ (0) =
∑
m,n

ρm,n |m〉 〈n| (6)

can be evaluated by expanding the exponential eL∞t in
an ordered product of exponentials. Usually, this task is
achieved by the systematical application of the Lie alge-
braic methods, in particular, using the Baker-Campbell-
Hausdorff (BCH) formulas [16–19,29]. For the dissipative
AHO, this expansion was obtained in reference [12], and
we reproduce in detail the procedure here. To carry out
this expansion, we begin by evaluating the commutation
relations between the sup-op defined in (3). They are listed
in Table 1.

The sup-op M−P , 1
2 (M + P + 1), J , R form a four-

dimensional Lie algebra, which we will denominate A4.
We easily recognize a subalgebra su (1, 1) contained in A4,
formed by the set 1

2 (M + P + 1), J , R. Let us rewritten
the Liouvillian L∞ as

L∞ = ig (M−P) − Λ (M + P + 1) + 2k (J + R) , (7)

where we define the sup-op

Λ = ig (M−P) + 2κ, (8)

that is to be formally considered a c-number, since the sup-
op M−P commutates with the rest. The eigenvectors of
Λ are the same of M−P . It is easy to verify that these
eigenvectors belong to the set {|m〉 〈n|}, with eigenvalues
ig (m − n) + 2κ.

The formal solution (5) can be written as

ρ̂ (t) = exp [−Λt (M + P + 1) + 2κt (J + R)]

× exp [igt (M−P)] ρ̂ (0) . (9)

Applying the well-known BCH formulas to expand
su (1, 1) Lie exponentials [19,24,25], we rewritten the
above expression as

ρ̂ (t) = exp [Γ (t)R] exp {ln [Γ0 (t)] (M + P + 1)}
× exp [Γ (t)J ] exp [igt (M−P)] ρ̂ (0) , (10)

where Γ (t), and Γ0 (t) are time-dependent sup-op given by

Γ0 (t) =
∆

∆ cosh (∆t) + Λ sinh (∆t)
, (11a)

Γ (t) =
2κ sinh (∆t)

∆ cosh (∆t) + Λ sinh (∆t)
. (11b)

Here, we define

∆ =
√

Λ2 − 4κ2.

Let us consider the initial state (6). Its time evolution is

ρ̂ (t) = exp [Γ (t)R] exp {ln [Γ0 (t)] (M + P + 1)}

× exp [Γ (t)J ]
∑
m,n

ρmn exp [igt (m − n)] |m〉 〈n| .
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The action of exp [Γ (t)J ] on |m〉 〈n| is obtained in the
following way:

∑
m,n

exp [Γ (t)J ] |m〉 〈n| =
∑

j

∑
m,n

Γ j (t)
j!

aj |m〉 〈n| (a†)j

=
∑
m,n

(m,n)∑
j=0

√
m!n!

(m − j)! (n − j)!

× Γ j (t)
j!

|m − j〉 〈n − j|

=
∑
m,n

(m,n)∑
j=0

√
m!n!

(m − j)! (n − j)!

× γj
m−n (t)

j!
|m − j〉 〈n − j| ,

(12)

where (m, n) = min (m, n), and γn (t) is a c-number func-
tion obtained by direct substitution of the sup-op Λ by
ign + 2κ in the expression (11b). Let us redefine the in-
dexes m → m − j, n → n − j. Thus,

ρ̂ (t) = exp [Γ (t)R] exp {ln [Γ0 (t)] (M + P + 1)}

×
∑

j

∑
m,n

ρm+j,n+j

√
(m + j)! (n + j)!

m!n!

× exp [igt (m − n)]
γj

m−n (t)
j!

|m〉 〈n| . (13)

The action of exp {ln [Γ0 (t)] (M + P + 1)} on |m〉 〈n| is
evaluated in analogue way:

exp {ln [Γ0 (t)] (M + P + 1)} |m〉 〈n| =

Γ0 (t)
∑

j

{ln [Γ0 (t)]}j

j!
(M + P)j |m〉 〈n| .

|m〉 〈n| is an eigenstate of M+P with eigenvalue (m + n).
Hence,

exp {ln [Γ0 (t)] (M + P + 1)} |m〉 〈n| =

Γ0 (t)
∑

j

{ln [Γ0 (t)]}j

j!
(m + n)j |m〉 〈n|

= Γ m+n+1
0 (t) |m〉 〈n| = ζm+n+1

m−n (t) |m〉 〈n| .

Here, ζn (t) is a c-number function obtained by the di-
rect substitution of the sup-op Λ by ign + 2κ in the ex-
pression (11a). Substituting this result on equation (13),

we have

ρ̂ (t) = exp [Γ (t)R]

×
∑

j

∑
m,n

ρm+j,n+j

√
(m + j)! (n + j)!

m!n!

× exp [igt (m − n)]

× ζm+n+1
m−n (t)

γj
m−n (t)

j!
|m〉 〈n| . (14)

The action of exp [Γ (t)R] on |m〉 〈n| is evaluated in the
following way:

exp [Γ (t)R] |m〉 〈n| =
∑

l

Γ l (t)
l!

(
a†)l |m〉 〈n| al

=
∑

l

γl
m−n (t)

l!

√
(m + l)! (n + l)!

m!n!

× |m + l〉 〈n + l| .
Substituting this result in equation (14), we finally have
the general solution of equation (2) with the initial condi-
tion (6):

ρ̂ (t) =
∑

l

∑
j

∑
m,n

ρm+j,n+j

×
√

(m + j)! (n + j)! (m + l)! (n + l)!
m!n!l!j!

× γl+j
m−n(t) ζm+n+1

m−n (t) exp[igt(m−n)] |m+l〉 〈n+l| .
(15)

2.1 The Wigner function of the diffusive anharmonic
oscillator

We can obtain a representation of operators that belong
to B (H) as functions of the set F (Ω), i.e., functions on
the phase space Ω. This representation can be seen as
an invertible mapping between B (H) and the set F (Ω).
One of these representations is given by the Weyl-Wigner
transform [26–28], defined on a generic operator Ô as

O (q, p) =
∫ ∞

−∞
eiup/� 〈q − u/2| Ô |q + u/2〉du

≡ W
(
Ô

)
(q, p) , (16)

where q and p are phase space coordinates position and
momentum. The Weyl-Wigner transform of the operator
density, defined as

W (q, p) =
1

2π�

∫ ∞

−∞
eiup/� 〈q − u/2| ρ̂ |q + u/2〉du

≡ W
(

ρ̂

2π�

)
(q, p) , (17)

yields a quasi-probability distribution function — the
Wigner function, W (q, p). We can merge the phase space
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coordinates q and p in an unique complex variable α as
follows

α = q

√
Mω

2�
+ ip

√
1

2Mω�
≡ Q + iP√

2
.

Here, M is the mass of the oscillator, and Q and P are
adimensional real variables. Adopting this representation,
the Wigner function is defined by

W (α) =
1
π�

tr
[
ρ̂D̂ (α) eiπâ†âD̂† (α)

]
, (18)

where D̂ (α) = exp
(
αâ† − α∗â

)
is the unitary displace-

ment operator [30], and tr (·) stands for trace.
The application of the Weyl-Wigner transform in ex-

pression (15) produces

W (t) =
∑

l

∑
j

∑
m,n

ρm+j,n+j

×
√

(m + j)! (n + j)! (m + l)! (n + l)!
m!n!l!j!

× γl+j
m−n (t) ζm+n+1

m−n (t) exp [igt(m − n)] Πm+l,n+l.
(19)

Hence, the Wigner function W (t) of the nonlinear oscil-
lator is expressed in terms of the functions Πm,n, that are
obtained by the Weyl-Wigner transform of the eigenfunc-
tions {|m〉 〈n|}m,n=0,1,... of the sup-op (M−P), i.e.

Πm,n (α) = (2π�)−1 W (|m〉 〈n|) (α)

=
(−1)m

π�
〈n| D̂ (2α) |m〉 .

The matrix elements of the operator D̂ (2α) are given by
(see Appendix B of Ref. [30])

〈n| D̂ (2α) |m〉 =
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
m!
n!

e−2|α|2 (2α)n−m
Ln−m

m

(
4 |α|2

)
, n ≥ m

√
n!
m!

e−2|α|2 (−2α∗)n−m
Lm−n

n

(
4 |α|2

)
, m > n

(20)

where Ln−m
m (x) is the associated Laguerre polynomial.

Hence, we have

Πm,n (α) =
(−1)m

π�

√
m!
n!

e−2|α|2 (2α)n−m

× Ln−m
m

(
4 |α|2

)
; n ≥ m, (21a)

Πm,n (α) =
(−1)n

π�

√
n!
m!

e−2|α|2 (2α∗)m−n

× Lm−n
n

(
4 |α|2

)
; m > n. (21b)

We are interested in the time evolution of an ini-
tial coherent state ρ̂ (0) = |α0〉 〈α0|. In this case, the
matrix elements of the density operator are ρm,n =
αm

0 (α∗
0)

n e−|α0|2 (m!n!)−
1
2 . Substituting this into (19),

and reducing the sum in j we have

W (α, t) = e−|α0|2
∑

l

∑
m,n

αm
0 (α∗

0)
n

m!n!l!

×
√

(m + l)! (n + l)! γl
m−n (t) ζm+n+1

m−n (t)

× exp
[|α0|2γm−n(t)+igt(m−n)

]
Πm+l,n+l(α).

(22)

3 The classical limit of the diffusive
anharmonic oscillator

3.1 The equation of motion for the Wigner function
and its classical limit

Taking the Weyl-Wigner transform in both sides of mas-
ter equation (2) we obtain a partial differential equation
for W (α). The following correspondence formulas [28] are
useful in the execution of this task:

âρ̂ →
(

α +
1
2
∂α∗

)
W (α) , ρ̂â →

(
α − 1

2
∂α∗

)
W (α) ,

â†ρ̂ →
(

α∗ − 1
2
∂α

)
W (α) , ρ̂â† →

(
α∗ +

1
2
∂α

)
W (α) ,

(23)

where ∂α ≡ ∂/∂α and ∂α∗ ≡ ∂/∂α∗. The time evolution
of the Wigner function for the diffusive AHO is governed
by the PDE

∂tW (α, t) =
{
− ig

[(
2 |α|2 − 1

)
(α∗∂α∗ − α∂α)

− 1
4

(α∗∂α∗ − α∂α) ∂α∂α∗

]
+ 2κ∂α∂α∗

}
W (α, t) , (24)

where ∂t ≡ ∂/∂t.
The classical limit of the AHO can be obtained by

taking the limit �/J → 0 in equation (24), where J is
a characteristic classical action. Assuming that the initial
state is a coherent state with amplitude α0, J ∼ � |α0|2. In
this case, the classical limit corresponds to take |α0| → ∞.
In order to do this, let us define a new phase space vari-
able β = α/ |α0|. In terms of this variable, the PDE (24)
becomes

∂tW (β, t) =

{
− ig

[(
2 |α0|2 |β|2 − 1

)
(β∗∂β∗ − β∂β)

− 1
4 |α0|2

(β∗∂β∗ − β∂β) ∂β∂β∗

]
+ 2

κ

|α0|2
∂β∂β∗

}
W (β, t) .

(25)
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Here, ∂β ≡ ∂/∂β and ∂β∗ ≡ ∂/∂β∗. However, the con-
stants g e κ are defined in such way that this limit does
not make sense, since the nonlinear term is proportional to
|α0|2 and the stochastic sector of this equation vanishes.
In order to circumvent this problem, we redefine them:

g′ = g |α0|2 and κ′ = κ/ |α0|2 . (26)

Proceeding in this way, in the classical limit, the above
PDE becomes a Fokker-Planck (FP) equation for the clas-
sical probability distribution w (β, t):

∂tw (β, t) =
{
2ig′ |β|2 (β∂β − β∗∂β∗) + 2κ′∂β∂β∗

}
w (β, t) .

Resorting to the definition of the constants g′ e κ′ in
equation (26), we have

∂tw (α, t) =
{
2ig |α|2 (α∂α − α∗∂α∗) + 2κ∂α∂α∗

}
w (α, t) .

(27)
Note that the above equation contains only partial deriva-
tives in α and α∗ of order one or two. The partial deriva-
tives of superior order, responsible for the nonlocal char-
acter of equation (24), vanish in this limit.

At this point, we introduce the Poisson brackets

[f, g]P = i�−1 [(∂αf) (∂α∗g) − (∂αg) (∂α∗f)] ,

and equation (27) can be rewritten as

∂tw (α, t) = −�g
[
|α|4 , w (α, t)

]
P

− 2�
2κ [α, [α∗, w (α, t)]P ]P . (28)

3.2 The algebraic structure of the time evolution
equation for the classical distribution function

Our objective is to find the solution of the Cauchy prob-
lem described by equation (27) and the initial condition
w (α, 0). It is interesting to note that, whereas the Weyl-
Wigner transform maps operators in B (H) into functions
in F (Ω), sup-op are mapped in differential operators act-
ing on F (Ω). The main benefit of this mapping is the
preservation of the commutation relations. The generality
of the Lie algebraic techniques allows one to extend the
results obtained for a problem involving a particular real-
ization of a determined Lie algebra to another realization
of the same algebra. However, it is necessary to remember
that in the classical limit, this correspondence can not be
complete. Compare, e.g., the time evolution equation for
the the Wigner function (24) and for the classical distri-
bution function (27). In the classical version, the nonlin-
ear Hamiltonian term does not present derivatives in the
phase space coordinates of order superior to two.

Let us consider, for example, the sup-op M, that acts
on a generic operator Ô as follows

MÔ = â†âÔ.

Taking the Weyl-Wigner transform in both sides of above
equation, we obtain

W
(
MÔ

)
= W

(
â†âÔ

)

=
[
|α|2 −1

2
(1+α∂α−α∗∂α∗)−1

4
∂α∂α∗

]
O (α) .

Proceeding in this way, we obtain the following relations
between the sup-op and the differential operators:

M → |α|2 − 1
2

(1 + α∂α − α∗∂α∗) − 1
4
∂α∂α∗ ,

P → |α|2 − 1
2

(1 − α∂α + α∗∂α∗) − 1
4
∂α∂α∗ ,

J → |α|2 +
1
2

(1 + α∂α + α∗∂α∗) +
1
4
∂α∂α∗ ,

R → |α|2 − 1
2

(1 + α∂α + α∗∂α∗) +
1
4
∂α∂α∗ . (29)

At this point, it is useful to introduce the following differ-
ential operators:

Y0 =α∗∂α∗ − α∂α, (30a)

Yz = |α|2 − 1
4
∂α∂α∗ , (30b)

Y+ = |α|2 − 1
2

(1 + α∂α + α∗∂α∗) +
1
4
∂α∂α∗ , (30c)

Y− = |α|2 +
1
2

(1 + α∂α + α∗∂α∗) +
1
4
∂α∂α∗ , (30d)

In terms of these operators, the classical time evolution
equation for the diffusive AHO (27) becomes

∂tw (α, t) =
[
− ig

2
(Y+ + Y− + 2Yz)Y0

+ 2κ (Y+ + Y− − 2Yz)
]
w (α, t)

≡ L∞w (α, t) , (31)

The formal solution of the Cauchy problem is given by the
application of a Lie exponential on the initial condition
w (α, 0),

w (α, t) = exp (L∞t)w (α, 0) . (32)

We can express the Lie exponential exp (L∞t) as a product
of exponentials of which the action on functions in F (Ω)
is known. For this, we use the BCH expansion formulas,
in analogous way to the quantum version of the problem.
The first step is to determine the Lie algebra generated
by the commutation between the operators that appear
in equation (31).

The operators defined in equation (30) obey the com-
mutation relations presented in Table 2. Comparing Ta-
bles 2 and 1, we easily note that the differential opera-
tors in equations (30) yield another representation of the
four-dimensional algebra A4. Because of this, we can iden-
tify a Lie su (1, 1) subalgebra defined by the operators
{Yz , Y+, Y−}.
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Table 2. Commutation relations between the operators de-
fined in equation (30). The i, j table entry is the result of the
commutation of the operator in the ith row with the operator
in the jth column.

Y0 Yz Y+ Y−
Y0 0 0 0 0

Yz 0 0 Y+ −Y−
Y+ 0 −Y+ 0 −2Yz

Y− 0 Y− 2Yz 0

In the master equation (2), the unitary nonlinear term
introduces the sup-op M2−P2 = (M−P) (M + P). The
inclusion of this sup-op to the set considered in Table 1
yields an infinite Lie algebra when we evaluate its com-
mutation relations with another sup-op. The trick used
to find the solution of equation (2) consists formally in
considering the sup-op (M−P) as a c-number, since it
commutates with the rest and the functions obtained in
the expansion of the correspondent Lie exponential are,
in fact, functions of this operator. We can determine the
quantum state in time t, ρ̂ (t), by expanding the initial
state ρ̂0 in terms of the eigenfunctions of (M−P).

In the same way, the nonlinear Hamiltonian term in
Fokker-Planck equation (27) introduces products of dif-
ferential operators and they also yield an infinite Lie alge-
bra. However, these products are in the form YzY0, Y±Y0.
Since Y0 commutates with the rest of the elements de-
fined in equation (30), we can employ an analogous trick
to that employed in the solution of (27), i.e., we can for-
mally consider Y0 a c-number and evaluate the functions
in the correspondent Lie series as functions of this opera-
tor. However, the solution w (α, t) determined in this way
will be “useful” if the action of these differential operators
on elements in F (Ω) is known. Instead and analogously
to the procedure adopted in the quantum version of the
problem, we prefer to find the eigenfunctions of Y0 and to
express the initial state in terms of them. If we know how
each operator in equation (30) acts on these eigenfunc-
tions, the classical distribution w (α, t) can be written as
an expansion in terms of them with time dependent coef-
ficients.

3.3 Eigenfunctions of Y0

We can easily determine the eigenfunctions of Y0, since
they are related with the eigenfunctions of the sup-op
(M−P) by the Weyl-Wigner transform. Remembering,
the eigenfunctions of this sup-op are {|m〉 〈n|}m,n=0,1,...,
with eigenvalues m−n. By equation (29), the Weyl-Wigner
transform of the sup-op (M−P) yields the differential
operator Y0, i.e., W [(M − P)Ô] = Y0W(Ô), where Ô is
a generic operator acting on H. Making Ô = |m〉 〈n|, we
have

W [(M−P) |m〉 〈n|] = Y0W (|m〉 〈n|)
= (m − n)W (|m〉 〈n|) .

Therefore, the eigenfunctions of Y0 are the Weyl-Wigner
transform of |m〉 〈n|, namely Πm,n, with eigenvalues
(m − n).

Since the rest of the differential operators defined in
equation (29) are related with the sup-op defined in equa-
tion (3), and the action of the last on elements of set
{|m〉 〈n|}m,n=0,1,... is known, we directly obtain the cor-
responding action of the first on the functions Πm,n. In
fact, we have

Y0Πm,n = (m − n)Πm,n,

YzΠm,n =
1
2

(m + n + 1)Πm,n,

Y−Πm,n =
√

mnΠm−1,n−1,

Y+Πm,n =
√

(m + 1) (n + 1)Πm+1,n+1. (33)

In the problems that we are interested, we need to com-
pare the time evolutions of the Wigner function and of the
classical distribution associated to a given initial state1 ρ̂0.
For our purposes, it is interesting to express such function
as an expansion in eigenstates of Y0. Using the properties
of the Weyl-Wigner transform W we have

W0 = W (0) = W (ρ̂0) =
∑
m,n

ρm,nW (|m〉 〈n|) .

Hence,
W0 =

∑
m,n

ρm,nΠm,n. (34)

3.4 The time evolution of the classical distribution
function

Consider the initial state ρ̂0 =
∑

m,n ρm,n |m〉 〈n|. If
the corresponding Wigner function W0, given by equa-
tion (34), represents a valid classical distribution func-
tion, we can make w0 = w (0) = W0. The solution of
equation (27) for this initial condition is

w (t) = exp (L∞t)w0

= exp [G (t)Y+] exp [2Yz ln Gz (t)] exp [G (t)Y−] ,
(35)

where

Gz (t) =

4
√

igκY0

4
√

igκY0 cosh
(
2t
√

igκY0

)
+ (4κ + igY0) sinh

(
2t
√

igκY0

) ,

(36a)

1 A classical distribution associated to a state ρ̂ is a proba-
bility function that the marginal distributions coincide with
the corresponding ones produced by the Wigner function
W = (2π�)−1 W (ρ̂).
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G (t) =

(4κ − igY0) sinh
(
2t
√

igκY0

)

4
√

igκY0 cosh
(
2t
√

igκY0

)
+(4κ+igY0) sinh

(
2t
√

igκY0

) .

(36b)

Note that G (t) and Gz (t) are functions of operator Y0.
The action of exp [G (t)Y−] on the initial condition w0

yields

exp [G (t)Y−] w0 =
∑

j

∑
r,s

ρr+j,s+j
vj

r−s (t)
j!

×
√

(r + j)! (s + j)!
r!s!

Πr,s.

Here, vr−s (t) is obtained from the function G (t) substi-
tuting the operator Y0 by r − s in equation (36b).

Since Πm,n is eigenfunction of Yz with eigenvalue (m+
n + 1)/2, the action of exp [2Yz ln Gz (t)] on this function
produces

exp [2Yz ln Gz (t)] Πm,n = Gm+n+1
z (t)Πm,n.

Hence,

exp [2Yz ln Gz (t)] exp [G (t)Y−] w0 =

∑
j

∑
r,s

ρr+j,s+ju
r+s+1
r−s (t)

vj
r−s(t)

j!

√
(r + j)! (s + j)!

r!s!
Πr,s,

where ur−s (t) is obtained from Gz (t) substituting the
operator Y0 by r − s in equation (36a).

Finally, the action of the exponential exp [G (t)Y−] on
the above result gives

eG(t)Y+e2Yz ln Gz(t)eG(t)Y−w0 =
∑
j,l

∑
r,s

ρr+j,s+ju
r+s+1
r−s (t) vl+j

r−s (t)

×
√

(r + j)! (s + j)! (r + l)! (s + l)!
l!j!r!s!

Πr+l,s+l.

For the initial condition (34), the Fokker-Planck equa-
tion (27) for the diffusive AHO has the following solution

w (t) =
∑
j,l

∑
r,s

ρr+j,s+ju
r+s+1
r−s (t) vl+j

r−s (t)

×
√

(r + j)! (s + j)! (r + l)! (s + l)!
l!j!r!s!

Πr+l,s+l.

(37)

Compare this solution with the corresponding one ob-
tained for the density operator, equation (15), or for the
Wigner function, equation (22), in the quantum mechani-
cal version of the problem. Mutatis mutandis, the form of
the solutions is identical. Substituting the functions γ and
ζ in equation (22) by v and u, we find the result given in
equation (37).
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Fig. 1. Surface plot of the initial distributions W (α, 0) and
w (α, 0). In the quantum case, this distribution corresponds to
an initial coherent state |α0〉〈α0| with α0 = 3, whereas in the
classical case it corresponds to a Gaussian distribution centered
in α = 3 with unitary variance.

4 An example

In order to gain some insight into the differences between
quantum and classical dynamics of the nonlinear oscilla-
tor, let us compare the time evolution of a common initial
condition. Consider a coherent state |α0〉〈α0|. The asso-
ciated Wigner function in the complex phase space coin-
cides with the corresponding classical distribution, i.e., a
Gaussian with variance equal to the unity centered in α0.
An example is shown in Figure 1. The other figures repre-
sent the time evolution of this initial state in the quantum
and classical models and for the regimes with and with-
out diffusion. It is important to mention that the time
evolutions were obtained with the solutions (22) and (37).

The classical Hamiltonian evolution is such that any
point of the phase space moves around the origin with an-
gular frequency proportional to |α|2, where α is the coordi-
nate of this point [8]. Therefore, points over the the initial
distribution will rotate with an angular velocity that de-
pends on their distance to the origin. As consequence, the
distribution will continuously spiral around the origin, as
shown in Figure 2. The distribution yields a fine-structure
in phase space [8], which is gradually destroyed if diffusion
is included (see Fig. 3).

In the quantum version of the model, the unitary evo-
lution of the Wigner function exhibits a very different be-
havior that the classical one. For times equal to mπ/ (2g),
where m is an integer, the nonlinearity leads to the quan-
tum superpositions of states (m is odd) or revivals and
anti-revivals (m is even). These effects were already re-
ported by Yurke and Stoler [7] and examples of them are
given in Figures 4 and 5.

When the diffusion is included, the quantum effects
discussed above are gradually suppressed. The interfer-
ence in phase space is reduced, and the regions where the
Wigner function is negative diminish (see Fig. 6). For later
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Fig. 2. Surface plot of the classical distribution function for
the anharmonic oscillator at t = π (2g)−1 corresponding to the
Hamiltonian evolution (κ = 0) of the initial condition shown
in Figure 1. For this case, g/ω = 0.1. Note the fine-structure
yielded by the continuous spiraling of the distribution around
the origin of the phase space.
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Fig. 3. Surface plot of the classical distribution functions for
the anharmonic oscillator at instants t = π (2g)−1 (top) and
t = πg−1 (bottom) corresponding to the diffusive evolution
(κ/g = 0.1) of the initial condition shown in Figure 1. For
this case, g/ω = 0.1. Note that the fine-structure that should
be yielded in the diffusionless regime (see Fig. 2) is gradually
destroyed.
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Fig. 4. Surface plot of the Wigner function for the quantum
anharmonic oscillator at t = π (2g)−1 corresponding to the
unitary evolution (κ = 0) of the initial condition shown in
Figure 1. For this case, g/ω = 0.1. Note that the appearance
of phase space interference due to the coherent superposition of
states (Schrödinger cat state). At this time, the state exhibits
some squeezing as well [10]. Compare with the corresponding
classical one shown in Figure 2.
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Fig. 5. Surface plot of the Wigner function for the quantum
anharmonic oscillator at t = πg−1 corresponding to the unitary
evolution (κ = 0) of the initial condition shown in Figure 1. For
this case, g/ω = 0.1. At this instant, the oscillator exhibits an
anti-revival since it is found in a coherent state with amplitude
−α0, where α0 is the amplitude of the initial coherent state.

times, the Wigner function and the classical distribution
take a form of an annular volume around the origin of the
phase space. The annular region grows with time but its
maximum value diminishes in order to maintain constant
the integral of W (α, t) or w (α, t) over the phase space.
This suggests that the Wigner function of the quantum
diffusive AHO converges gradually to the corresponding
classical distribution function. Non-unitary effects due to
quantum dynamics of the open AHO were investigated by
Milburn and Holmes [9], and by Daniel and Milburn [10],
considering the coupling to a null and non-null tem-
perature reservoir, respectively. In both works, the au-
thors evaluates the time evolution of the Husimi function
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Fig. 6. Surface plot of the Wigner function for the quantum
anharmonic oscillator at instants t = π (2g)−1 (top) and t =
πg−1 (bottom) corresponding to the diffusive evolution (κ/g =
0.1) of the initial condition shown in Figure 1. For this case,
g/ω = 0.1. Comparing with Figures 4 and 5 one notes that
the phase space interferences and the revivals are gradually
suppressed.

(Q function), another phase space representation of the
density operator. Their results show a similar behavior
for the Q function, in qualitative agreement with the one
reported here.

These results serve to illustrate the procedure and to
show that the results are physically consistent. However,
a detailed study of the quantum to classical transition in
the AHO must take into account the role played by the
parameters of interest, namely the nonlinearity strength,
the diffusion constant, and the amplitude of the initial co-
herent state (a measure of classicallity of the initial state).
This work is in progress.

The author thanks to A.C. Oliveira and M.C. Nemes for fruitful
discussions on this topic.
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